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Abstract 

The turning circle and zigzag maneuvering performance of surface combatant, DTMB 5415 have been 

investigated by using system-based method. Unsteady Reynolds averaged Navier Stokes (URANS) 

approach is utilized to estimate hydrodynamic derivatives and hull-propeller-rudder interactions. 

DTMB 5415 is a twin-propeller / twin-rudder ship and there are some studies on the derivation of 

maneuvering coefficients in the literature but none of them took into account the propeller and rudder 

forces. In this study, static drift, pure yaw, combined yaw and drift, self-propulsion and rudder tests of 

DTMB 5415 hull have been simulated in calm and deep water condition. Bare hull PMM simulations 

were carried out for a fixed Froude number of 𝐹𝑟 = 0.28, while the simulations related to rudder and 

propeller were performed at 𝐹𝑟 = 0.25. Computational results were used by MMG (Maneuvering 

Modeling Group) model to estimate the maneuvering performance of the ship. Hydrodynamic 

derivatives from numerically generated forces and moment data were obtained by single-run and 

multiple-run methods. The results from both methods were tested in an in-house maneuvering 

simulation code (MANSIM) that solves for ship motions and they were compared with computed 

turning circle and zigzag maneuvering performances. Although it is known a priori that the multiple-

run method would give better solution in overall, it was found that the single-run method can be a 

good alternative in some specific cases. For the zigzag and turning circle tests, the results from single-

run method were found satisfactory when correct PMM test conditions were adopted.   

Keywords: DTMB 5415; surface combatant; MMG; mathematical model; single-run method; multiple-

run method; numerical PMM 

Nomenclature 

Abbreviations    

RANS Reynolds Averaged Navier-Stokes   SR Single Run 

PMM Planar Motion Mechanism  MRL Low-order Multiple Run 

COG Center of Gravity   FS Fourier Series 
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MMG Maneuvering Modeling Group  RE Richardson Extrapolation 

DFBI Dynamic Fluid-Body Interaction  LCB Longitudinal Center of Buoyancy 

SPSR Single Propeller/Single Rudder  LCG Longitudinal Center of Gravity 

SPTR Single Propeller/Twin Rudder  TCG Transversal Center of Gravity 

TPTR Twin Propeller/Twin Rudder  VCG Vertical Center of Gravity 

Symbols 
   

𝑜0 − 𝑥0𝑦0𝑧0 Earth-fixed coordinate system  𝑋 Total surge force acting on ship in x 

axis (𝑁) 

𝑜 − 𝑥𝑦𝑧 Ship-fixed coordinate system  𝑋𝐻 Surge force due to hull in x axis (𝑁) 

𝑢, 𝑣 Velocities in x and y axis at 

midship (𝑚/𝑠) 

 𝑋𝑅 Surge force due to rudder in x axis (𝑁) 

𝑟 Yaw rate around z axis at 

midship (𝑟𝑎𝑑/𝑠) 

 𝑋𝑃 Surge force due to propeller in x axis 

(𝑁) 

𝑢̇, 𝑣̇ Accelerations in x and y axis at 

midship (𝑚/𝑠2) 

 𝑌 Total sway force acting on ship in y 

axis (𝑁) 

𝑟̇ Acceleration around z axis at 

midship (𝑟𝑎𝑑/𝑠2) 

 𝑌𝐻 Sway force due to hull in y axis (𝑁) 

𝑈 Ship velocity at midship, 𝑈 =

√𝑢2 + 𝑣2 (𝑚/𝑠) 

 𝑌𝑅 Sway force due to rudder in y axis (𝑁) 

𝑈𝐶  Service speed of ship (𝑚/𝑠)  𝑁 

 

Total yaw moment acting on ship 

around z axis (𝑁) 

𝐹𝑟 Froude number (−)  𝑁𝐻 
 

Yaw moment due to hull around z axis 

(𝑁 𝑚) 

𝜌 Water density (𝑘𝑔/𝑚3)  𝑁𝑅 

 

Yaw moment due to rudder around z 

axis (𝑁 𝑚) 

𝑔 Gravity, 𝑔 = 9.81 (𝑚/𝑠2)
  

 𝐼𝑧 Yaw moment of inertia around z axis 

(𝑘𝑔 𝑚2) 

𝜔 Angular frequency of yaw 

motion, 𝜔 = 2𝜋𝑓 (𝑟𝑎𝑑/𝑠) 

 𝑚𝑥, 𝑚𝑦 Added mass due to ship motion in x 

and y directions, respectively (𝑘𝑔) 

𝑓 Oscillation frequency of yaw 

motion (1/𝑠) 

 𝑓(𝑡) Time histories of forces and moment 

acting on the hull 

𝜓 Ship heading angle (𝑟𝑎𝑑)  𝐽𝑧 Added yaw moment of inertia around z 

axis (𝑘𝑔 𝑚2) 

𝛽 Ship drift angle (𝑟𝑎𝑑)  𝑢𝑃 Longitudinal inflow velocity to 

propeller (𝑚/𝑠) 

𝛿 Rudder angle (𝑟𝑎𝑑)  𝑡𝑃 Propeller thrust deduction factor in 

maneuvering motions (−) 

𝐿 Overall length of ship (𝑚) 

 

 𝑤𝑃0 Effective wake fraction at propeller 

position in straight motion (−) 

𝐿𝑤𝑙  Ship waterline length (𝑚)  𝑤𝑃 Effective wake fraction at propeller 

position in maneuvering motion (−) 

𝐵𝑤𝑙  Ship beam at waterline (𝑚)  𝑛𝑃 Propeller revolution (1/𝑠) 

𝑇 Ship draught (𝑚)  𝐷𝑃 Propeller diameter (𝑚) 

𝐶𝐵 Block coefficient (−)  𝐾𝑇 Thrust coefficient (−) 

𝐶𝑀 Mid-section coefficient (−)  𝑘0, 𝑘1, 𝑘2 Propeller open water characteristics for 

expressing 𝐾𝑇 (−) 

𝐶𝑃 Prismatic coefficient (−)  𝐽𝑃 Propeller advance ratio (−) 

𝑆 Wetted surface area of ship 

(𝑚2) 

 𝛽𝑃 Geometrical inflow angle to propeller 

in maneuvering (−) 



𝑚 Ship mass (𝑡)  x𝑃
′ , y𝑃

′  

 

Non-dimensional longitudinal and 

lateral position of propeller from 

midship (−) 

𝑥𝐺  Longitudinal position of center 

of gravity in 𝑜 − 𝑥𝑦𝑧 (𝑚) 

 𝐹𝑁 Rudder normal force (𝑁) 

𝑡𝑅 Steering resistance deduction 

factor (−) 

 𝑙𝑅
′  Flow-straightening coefficient of yaw 

rate for rudder, 𝑙𝑅
′ = 𝑙𝑅/𝐿 (−) 

𝑎𝐻 Rudder lateral force increase 

factor (−) 

 𝜀 Ratio of effective wake fraction in way 

of propeller and rudder (−) 

x𝐻
′  Non-dimensional longitudinal 

position of acting point of 

additional lateral force (−) 

 𝜂 Ratio of propeller diameter to rudder 

span (−) 

x𝑅
′ , 𝑦𝑅

′  Non-dimensional longitudinal 

and lateral coordinate of rudder 

position, respectively (−) 

 𝜅 An experimental constant for 

expressing 𝑢𝑅 (−) 

𝛬 Rudder aspect ratio (−)  𝐴𝑇
′  Advance in turning maneuver (−) 

𝐴𝑅 Profile area of movable part of 

mariner rudder (𝑚2) 

 𝑇𝑇
′  Transfer in turning maneuver (−) 

𝑢𝑅, 𝑣𝑅  Longitudinal and lateral inflow 

velocity components to rudder, 

respectively (𝑚/𝑠) 

 𝐷𝑇
′  Tactical diameter in turning maneuver 

(−) 

𝛼𝑅  Effective inflow angle to 

rudder (𝑟𝑎𝑑) 

 𝑟𝑇
′  Steady yaw rate in turning maneuver 

(−) 

𝛿𝑅 Effective rudder angle where 

the rudder normal force 

becomes zero (𝑟𝑎𝑑) 

 𝑈𝑇
′  Steady turning speed (−) 

𝛾𝑅  Flow-straightening coefficient 

of sway velocity for rudder (−) 

 𝑂𝐴1𝑠𝑡 First overshoot angle in zigzag 

maneuvering (𝑑𝑒𝑔) 

𝛽𝑅  Effective drift angle at rudder 

position (𝑟𝑎𝑑) 

 𝑂𝐴2𝑛𝑑 Second overshoot angle in zigzag 

maneuvering (𝑑𝑒𝑔) 

𝐻𝑅  Rudder span length (𝑚)    

 

1. Introduction 
Improving ship maneuvering performance which is directly associated with navigation safety and 

economy is a very important part of design process that often requires high cost and long computation 

times. Primary features of maneuverability, such as turning and course keeping abilities, often require 

contradictory design properties that makes the problem challenging to design a ship with good 

maneuverability in every aspect. Thus, an effective optimization study should be performed under the 

cost and performance constraints during the preliminary design stage. 

Research in the field of ship maneuverability have been increased in recent years. Many review 

papers have been presented so far to highlight ship maneuverability about prediction methods (Sukas 

et al., 2018a,b), mathematical models (Sutulo and Soares, 2011), inland vessels (Liu et al., 2015), 

shallow and restricted water effects (Vantorre, 2003), and rudder performance (Liu and Hekkenberg, 

2017). Some basic empirical approaches are usually preferred to estimate the maneuvering 

performance in the initial design stage (Kijima et al., 1990; Lee and Shin, 1998; Yoshimura and 

Masumoto, 2012; Liu et al., 2017). However, in some cases where further analyses are required, 

calculations may need to be carried out with experimental or numerical methods to obtain more 

precise results. Particularly, as the high performance computing has been developed in the last few 

decades, extensive studies have been made with computational tools such as RANS (Reynolds 

Averaged Navier-Stokes) to assess the maneuvering performance of ships. There are two types of 

RANS-based application used in maneuvering predictions such as CFD-based and system-based 



methods. The first one includes full time-domain simulation of free running tests with steering 

rudder(s) and rotating propeller(s). Recent examples of the real-time maneuvering simulations can be 

found in (Shen et al., 2015; Carrica et al., 2016; Ohashi et al., 2018) for ships with single rudder 

configuration. Carrica et al. (2013), Moctar et al. (2014), Dubbioso et al. (2015) have also carried out 

full time-domain simulations for ships with twin rudder configuration. However such direct methods 

require enourmous computational resources which restrict its feasibility for practical purposes. In 

system-based methods, the hydrodynamic derivatives used in the equations of motion can be obtained 

from numerical simulations of captive tests which are straight line test, planar motion mechanism 

(PMM) or circular motion test (CMT). Several studies have been carried out using RANS tools to 

estimate the hydrodynamic derivatives utilizing FS (Fourier Series) expansion (Sakamoto et al., 2012a; 

Yoon et al., 2015a; Liu and Zou, 2018). Hydrodynamic derivatives can also be estimated from free-

running data or direct CFD simulation results using system identification techniques (Araki et al., 2012). 

Free running maneuvers can be simulated with these hydrodynamic derivatives using a mathematical 

model such as Abkowitz model (Abkowitz, 1964) or MMG (Maneuvering Modeling Group) model 

(Ogawa and Kasai, 1978; Yasukawa and Yoshimura, 2015). The latter is mostly preferred by researchers 

due to its modular background since it is possible to take the hull-rudder-propeller interaction into 

account. The original MMG model is usually used for single-propeller single-rudder (SPSR) 

configurations (Liu et al., 2015; He et al., 2016; Arai and Hino, 2017), but it has also been extended to 

single-propeller twin-rudder (SPTR) and twin-propeller twin-rudder (TPTR) cases. For instance, Kang et 

al. (2008) developed a mathematical model for a large SPTR ship and validated the results with free 

running data. The interactions of hull-propeller and hull-rudder were investigated experimentally, as 

well as the factors affecting the maneuvering performance of twin rudder system. Lee et al. (2003) 

modified the MMG model and proposed a new mathematical model for a TPTR ship, and validate the 

results with experimental data. Khanfir et al. (2011) proposed another method based on hill-climbing 

procedure to estimate the hull-rudder interaction coeffficients for SPTR and TPTR ships. It was also 

reported that the flow-straightening coefficient shows a slight variation for starboard and port side 

turnings for SPSR and TPTR ships, whereas it is remarkably asymmetric for SPTR ships. Guo and Zou 

(2017) and Guo et al. (2018) utilized a RANS tool to obtain hydrodynamic derivatives and the 

interaction among the hull, propeller and rudder by investigating the local flow field in detail. 

Subsequently, the turning and zigzag maneuvers of a TPTR ship were simulated using a 4-DOF MMG 

model and the trajectories and some kinematical parameters were compared with the free running 

data. 

In this study, the effects of different methods which are based on FS expansion for obtaining the 

hydrodynamic derivatives on free running simulations are investigated. Numerical simulations of static 

drift test, pure yaw test and yaw-drift test are carried out for the DTMB5415 model with TPTR 

configuration. The primary aim here is to compare the results of turning and zigzag maneuvers by 

single-run (SR) method with those of multiple-run (MRL) method. The MRL method requires more CFD 

simulations than SR method. Although the MRL method is known to be more reliable (Sakamoto et al., 

2012; Yoon et al., 2015), the accuracy of the results obtained by SR method has also been investigated 

since it has an advantage in terms of computational time. Meanwhile, the hull-propeller and the hull-

rudder interaction coefficients are predicted by performing self-propulsion, static rudder and 

combined drift-rudder simulations. Then, a system-based simulation of turning and zigzag maneuvers 

in calm and deep water condition is carried out using a 3-DOF MMG model. Predicted trajectories and 

time histories of kinematic parameters are compared with the available experimental data. 

 



2. Mathematical Model 
In this study, 3-DOF maneuvering motion for a ship with TPTR (twin-propeller, twin-rudder) 

configuration is numerically simulated utilizing MMG models used by Lee and Fujino (2003), Yasukawa 

and Yoshimura (2015) and Khanfir et al. (2011). Briefly; the model breaks the total hydrodynamic 

forces into different parts (contributors) from hull, rudders and propellers. The interaction effects of 

hull-rudders and hull-propellers are also taken into account by self-propulsion and rudder tests. The 

coordinate system and the equations of maneuvering motion for hydrodynamic forces and moment 

will be described in the following sub-sections. 

2.1 Coordinate Systems 
The basic dynamic of motion can be described using the Newton’s second law of motion, hence two 

different coordinate systems can be defined for a maneuvering ship: earth-fixed coordinate system 

(𝑜0 − 𝑥0𝑦0𝑧0) and ship-fixed (𝑜 − 𝑥𝑦𝑧) coordinate system as shown in Figure 1. The origin of the earth-

fixed coordinate system is generally considered to be the point where the maneuvering motion starts, 

while the origin of the ship-fixed coordinate system is selected on the midship. 

 

Fig. 1. Earth-fixed and ship-fixed coordinate systems to define 3-DOF ship maneuvering motion. 

The heading angle, 𝜓 refers to the angle between 𝑥 and 𝑥0 axis. The dash-dot curve shows the 

trajectory of ship. The difference between ship’s heading and actual course direction (velocity vector 

at COG) is drift angle, 𝛽 = tan−1(−𝑣 𝑢⁄ ). The rudder angle, 𝛿 is positive while rotating to starboard 

side. 𝑢 and 𝑣 denote the velocity components in 𝑥 and 𝑦 directions, 𝑟 is yaw rate that can also be 

defined as 𝑟 =
𝜕𝜓

𝜕𝑡
. The speed of ship is indicated as 𝑈 (= √𝑢2 + (−𝑣)2). 

2.2 Equations of Motion in Horizontal Plane 
The maneuverability of a traditional ship form on the calm water surface is examined for surge, 

sway and yaw motions. Therefore, a basic 3–DOF model in horizontal plane is used in the calculations. 

The equations of maneuvering motion in ship-fixed coordinate system can then be expressed as 

follows (Yasukawa and Yoshimura, 2015): 

 (𝑚 + 𝑚𝑥)𝑢̇ − (𝑚 + 𝑚𝑦)𝑣𝑟 − 𝑚𝑥𝐺𝑟2 = 𝑋𝐻 + 𝑋𝑅 + 𝑋𝑃 

(𝑚 + 𝑚𝑦)𝑣̇ + (𝑚 + 𝑚𝑥)𝑢𝑟 + 𝑚𝑥𝐺𝑟̇ = 𝑌𝐻 + 𝑌𝑅 

(𝐼𝑧 + 𝐽𝑧 + 𝑚𝑥𝐺
2)𝑟̇ + 𝑚𝑥𝐺(𝑣̇ + 𝑢𝑟) = 𝑁𝐻 + 𝑁𝑅 + 𝑌𝐻𝑥𝐺 

 

[1] 

The subcripts 𝐻, 𝑅 and 𝑃 refer to hull, rudder and propeller, respectively. 𝑚 is the ship mass and 𝐼𝑧 

is moment of inertia around vertical axis. 𝑚𝑥, 𝑚𝑦 and 𝐽𝑧 represent the added masses and added 

moment of inertia. 𝑥𝐺 is the longitudinal center of gravity, where the midship is taken as origin of the 

coordinate system. Since the origin of ship-fixed coordinate system is defined on COG in CFD 



simulations, the term YHxG is added to RHS of the yaw moment equation in Eqn.[1]. Dot notations of 

surge, sway and angular velocities refer to time derivative of the corresponding kinematical parameter. 

The moment of inertia is calculated approximately as 𝐼𝑧 ≅ 𝑚(0.25𝐿𝑝𝑝)2. In this study, the 

hydrodynamic forces and moment, the hydrostatic properties and the kinematical parameters are 

non-dimensionalized as given in Table 1. 

Table 1. Non-dimensionalization of ship parameters. 

Parameters Non-dimensionalized by 

𝑋, 𝑌 0.5𝜌𝑈2𝐿𝑇 

𝑁 0.5𝜌𝑈2𝐿2𝑇 

𝑢, 𝑣 𝑈 

𝑟 𝑈 𝐿⁄  

𝑚, 𝑚𝑥, 𝑚𝑦 0.5𝜌𝐿2𝑇 

𝐼𝑧, 𝐽𝑧 0.5𝜌𝐿4𝑇 

 

2.3 Hull Forces and Moment 
It has been assumed that the ship advance speed is sufficiently low and therefore the wave-making 

resistance is not dominant. Hydrodynamic forces and moment acting on the midship can then be 

described in terms of non-dimesional sway velocity (𝑣′) and yaw rate (𝑟′) as follows:  

𝑋𝐻
′ = 𝑋0

′ (𝑢) + 𝑋𝑣𝑣
′ 𝑣′2

+ (𝑋𝑣𝑟
′ + 𝑚′ + 𝑚𝑦

′ )𝑣′𝑟′ + (𝑋𝑟𝑟
′ + 𝑚′𝑥𝐺

′ )𝑟′2
 

𝑌𝐻
′ = 𝑌𝑣

′𝑣′ + (𝑌𝑟
′ − 𝑚′ − 𝑚𝑥

′ )𝑟′ + 𝑌𝑣𝑣𝑣
′ 𝑣′3

+ 𝑌𝑣𝑣𝑟
′ 𝑣′2

𝑟′ + 𝑌𝑣𝑟𝑟
′ 𝑣′𝑟′2

+ 𝑌𝑟𝑟𝑟
′ 𝑟′3

 

𝑁𝐻
′ = 𝑁𝑣

′𝑣′ + (𝑁𝑟
′ − 𝑚′𝑥𝐺

′ )𝑟′ + 𝑁𝑣𝑣𝑣
′ 𝑣′3

+ 𝑁𝑣𝑣𝑟
′ 𝑣′2

𝑟′ + 𝑁𝑣𝑟𝑟
′ 𝑣′𝑟′2

+ 𝑁𝑟𝑟𝑟
′ 𝑟′3

 

 

[2] 

where all coefficients (𝑋𝑣𝑣
′ , 𝑌𝑣𝑣𝑣

′ , 𝑌𝑣𝑟𝑟
′ , 𝑁𝑟𝑟𝑟

′ , etc.) are defined as hydrodynamic derivatives or 

maneuvering coefficients for maneuvering motion, while 𝑋0
′ (𝑢) represents the total resistance 

coefficient in straight motion. 𝑋𝑣𝑣
′ , 𝑌𝑣

′, 𝑌𝑣𝑣𝑣
′ , 𝑁𝑣

′ , 𝑁𝑣𝑣𝑣
′  are obtained from static drift tests, (𝑋𝑟𝑟

′ + 𝑚′𝑥𝐺
′ ), 

(𝑌𝑟
′ − 𝑚′ − 𝑚𝑥

′ ), 𝑌𝑟𝑟𝑟
′ , (𝑁𝑟

′ − 𝑚′𝑥𝐺
′ ), 𝑁𝑟𝑟𝑟

′  are determined by performing pure yaw test and (𝑋𝑣𝑟
′ +

𝑚′ + 𝑚𝑦
′ ), 𝑌𝑣𝑣𝑟

′ , 𝑌𝑣𝑟𝑟
′ , 𝑁𝑣𝑣𝑟

′ , 𝑁𝑣𝑟𝑟
′  can be obtained from combined yaw and drift test. It should be noted 

that predicted forces and moment (𝑋𝐻
′ , 𝑌𝐻

′ , 𝑁𝐻
′ ) in pure yaw and yaw and drift tests include added mass 

and centrifugal force terms.  

2.4 Propeller Force 
The hydrodynamic force due to propellers for a TPTR ship can be described as follows: 

𝑋𝑃
𝑃,𝑆 = (1 − 𝑡𝑃

𝑃,𝑆)𝜌𝑛𝑃
2𝐷𝑃

4𝐾𝑇
𝑃,𝑆

 [3] 

where the superscripts ‘P’ and ‘S’ mean port and starboard sides, respectively. Since the propellers are 

identical and rotating at the same revolutions per second (rps); the diameter (𝐷𝑃) and the propeller 

revolutions (𝑛𝑃) are taken equal for both propellers. Each of the propellers is rotating inward at 

constant rotation rate. In addition, it is assumed that the propellers’ thrust deduction factors in straight 

(𝑡𝑃0
𝑃,𝑆) and maneuvering motion (𝑡𝑃

𝑃,𝑆) are same for simplicity. The thrust coefficient (𝐾𝑇
𝑃,𝑆) which can 

be derived by quadratic polynomial fitting to open water characteristics can be given as the following: 

𝐾𝑇
𝑃,𝑆 = 𝑘0 + 𝑘1𝐽𝑃

𝑃,𝑆 + 𝑘2(𝐽𝑃
𝑃,𝑆)2 [4] 

Here, 𝑘0, 𝑘1 and 𝑘2 are the coefficients of polynomial equation of advance ratio (𝐽𝑃
𝑃,𝑆). 𝐽𝑃

𝑃,𝑆 is 

defined for TPTR ships as follows (Khanfir et al., 2011): 



𝐽𝑃
𝑃,𝑆 =

(1 − 𝑤𝑃
𝑃,𝑆)(𝑢 + 𝑦𝑃

𝑃,𝑆𝑟)

𝑛𝑃𝐷𝑃
 [5] 

where 𝑤𝑃 is the wake coefficient during the maneuvering motion and 𝑦𝑃 (𝑦𝑃
𝑆 = −𝑦𝑃

𝑃) is the offset of 

the propellers from the centerline. Since 𝑤𝑃 changes during the maneuvering motion, it is usually 

estimated on the the wake coefficient in straight motion (𝑤𝑃0
𝑃,𝑆) as proposed by Inoue et al. (1981), 

which is given in Eqn. 6.  

𝑤𝑃
𝑃,𝑆 = 𝑤𝑃0

𝑃,𝑆exp (−4𝛽𝑃
2) [6] 

The above-mentioned expression in Eqn.6 is originally given for SPSR ships; however, it is used for 

the present TPTR ship for simplicity as it was also adopted to a TPTR ship in another study (Liu et al., 

2017). 𝛽𝑃 is geometrical inflow angle to the propellers in maneuvering and can be derived as follow: 

𝛽𝑃 = 𝛽 − x𝑃
′ 𝑟′ [7] 

where 𝛽 is drift angle and x𝑃
′  is non-dimensional longitudinal distance of the propellers from midship 

(𝑥𝑃 𝐿⁄ ). Since both the propellers located at same longitudinal coordinate for the reference benchmark 

ship, the value of 𝛽𝑃 can be assumed as equal for the propellers. 

2.5 Rudder Forces and Moment 
The forces and moment on the hull due to rudders can be expressed based on the rudder normal 

force (𝐹𝑁
𝑃,𝑆) as follows (Khanfir et al., 2011): 

𝑋𝑅 = −(1 − 𝑡𝑅)(𝐹𝑁
𝑃 𝑠𝑖𝑛𝛿𝑃 + 𝐹𝑁

𝑆 𝑠𝑖𝑛𝛿𝑆) 

𝑌𝑅 = −(1 + 𝑎𝐻)(𝐹𝑁
𝑃 𝑐𝑜𝑠𝛿𝑃 + 𝐹𝑁

𝑆 𝑐𝑜𝑠𝛿𝑆) 

𝑁𝑅 = −(𝑥𝑅 + 𝑎𝐻𝑥𝐻)(𝐹𝑁
𝑃 𝑐𝑜𝑠𝛿𝑃 + 𝐹𝑁

𝑆 𝑐𝑜𝑠𝛿𝑆)+(1 − 𝑡𝑅)( 𝑦𝑅
𝑃𝐹𝑁

𝑃𝑠𝑖𝑛𝛿𝑃 + 𝑦𝑅
𝑆𝐹𝑁

𝑆𝑠𝑖𝑛𝛿𝑆) 

 

[8] 

where 𝑡𝑅 is the steering resistance deduction factor and 𝑎𝐻 is the rudder increase factor. Taking the 

midship as origin of the ship-fixed coordinate system, 𝑥𝐻 is the non-dimensional longitudinal 

coordinate of acting point of the additional lateral force. These coefficients represent the interaction 

between hull and rudder. It is assumed that the rudders do not interact with each other as they are 

located sufficiently far away from the ship’s centerline.  𝑥𝑅 and 𝑦𝑅 (𝑦𝑅
𝑆 = −𝑦𝑅

𝑃) denote the longitudinal 

and lateral coordinates of the rudders, respectively. The rudder normal force acting on rudders for a 

TPTR type ship is given by the following equation (Lee and Fujino, 2003): 

 
𝐹𝑁

𝑃,𝑆 = 0.5𝜌𝐴𝑅[(𝑢𝑅
𝑃,𝑆)2 + (𝑣𝑅

𝑃,𝑆)2]
6.13𝛬

𝛬 + 2.25
sin 𝛼𝑅

𝑃,𝑆 [9] 

where 𝜌 is the water density, 𝐴𝑅 denotes the profile area of the moveable part of the rudder and 𝐴𝑅 =

𝐴𝑅
𝑃 = 𝐴𝑅

𝑆 . 𝛬 is the rudder aspect ratio and it is also taken same for both rudders. Furthermore, the 

effective inflow angle to the rudders (𝛼𝑅
𝑃,𝑆) for ships with TPTR configuration is defined by the following 

equation (Khanfir et al., 2011): 

 𝛼𝑅
𝑃,𝑆 = 𝛿𝑃,𝑆 − 𝛿𝑅

𝑃,𝑆 [10] 

where 𝛿𝑅 is the effective rudder angle at which the rudder normal force becomes zero. This angle is 

given as shown in the following equations. 



 
𝛿𝑅

𝑃,𝑆 = 𝛾𝑅
𝑃,𝑆𝛽𝑅

𝑃,𝑆 − tan−1(
𝑦𝑅

𝑃,𝑆

𝑥𝑃
𝑃,𝑆) [11] 

 𝛽𝑅
𝑃,𝑆 = 𝛽 − 𝑙𝑅

𝑃,𝑆𝑟′ [12] 

Here, 𝛾𝑅 and 𝑙𝑅
′ (𝑙𝑅/𝐿) are called flow straightening factors due to lateral speed and yaw rate of the 

ship, respectively. As reported in Kang et al. (2008), 𝛾𝑅 shows a variation during the port and starboard 

turnings, but 𝑙𝑅
′  is assumed to be constant in this study, 𝑙𝑅

′ ≅ 2𝑥𝑅 (Kijima et al., 1990; Kim et al., 2007). 

The equations for the longitudinal (𝑢𝑅) and lateral (𝑣𝑅) inflow velocities to the rudder given in Eqn. 9, 

for TPTR ships are as follows: 

 

𝑢𝑅
𝑃,𝑆 = 𝜀𝑃,𝑆𝑢𝑃

𝑃,𝑆√𝜂 {1 + 𝜅𝑃,𝑆 (√1 +
8𝐾𝑇

𝑃,𝑆

𝜋(𝐽𝑝
𝑃,𝑆)2

− 1)}

2

+ (1 − 𝜂) [13] 

 𝑣𝑅
𝑃,𝑆 = 𝑢𝑅

𝑃,𝑆𝑡𝑎𝑛𝛿𝑅
𝑃,𝑆 [14] 

where 𝑢𝑃 is the longitudinal inflow velocity to the propeller, 𝑢𝑃 = (1 − 𝑤𝑃
𝑃,𝑆)(𝑢 + 𝑦𝑃

𝑃,𝑆𝑟). 

Furthermore, 𝜀 indicates the ratio of wake fraction at rudder position (1 − 𝑤𝑅) to that at propeller 

position (1 − 𝑤𝑃). 𝜅 is a constant for expressing 𝑢𝑅, and 𝜂 refers to ratio of the diameter of propeller 

to rudder span. 

3. Computational Method 
In order to calculate the hydrodynamic forces acting on the hull; the continuity and Navier-Stokes 

equations are discretized by a finite volume method (FVM) and solved numerically utilizing the 

commercial RANS solver STAR-CCM+. Incompressible flow condition is imposed on the viscous flow 

field and perturbations on the free surface are taken into account. The Volume of Fluid (VOF) method 

is adopted to capture the elevation of free surface. A SIMPLE algorithm is employed to solve pressure-

velocity coupling. First- order backward Euler scheme is used for discretizing the temporal terms, while 

second-order upwind scheme is performed for the convection and diffusion terms. The 𝑘 − 𝜔 𝑆𝑆𝑇 

turbulence model with wall functions is applied to computational domain. This model performs the 

𝑘 − 𝜀 model in the far field region and adopted the 𝑘 − 𝜔 model for solving the near-wall flow 

(Menter, 1994).  

In this study, Dynamic Fluid-Body Interaction (DFBI) option is activated to simulate the translation 

and rotation motions. In the DFBI approach, the rigid body executes the prescribed harmonic motion 

within the fluid domain. The DFBI module is used in the static drift and the dynamic PMM simulations 

for the ship which is free to heave and pitch motions; whereas the self-propulsion, the static rudder 

and the drift-rudder tests are simulated in a fixed-steady condition. Moving Reference Frame (MRF) 

technique is used to simulate the fluid flow around the rotating propellers. Time step size chosen for 

the static drift simulations is 0.04s, while it is determined as 0.01s for the dynamic PMM simulations. 

The following sections present the main particulars of ship model, the simulation matrix, the boundary 

conditions, the grid design and the methods for determination of hydrodynamic derivatives. 

3.1 Geometry and Simulation Conditions  
The geometry selected for the present study is 1/46.588 scaled DTMB 5415 model (DTMB 5512), 

which is a TPTR ship appended with only bilge keels (https://simman2014.dk). This hull form, which is 

one of the benchmark models adopted by ITTC (International Towing Tank Conference), is used in 



several studies for maneuvering predictions (Bhushan et al., 2011; Sakamoto et al., 2012a,b; Carrica et 

al., 2013; Yoon et al. 2015a,b; Woolliscroft and Maki, 2016, Duman et al., 2017, Duman and Bal, 2018). 

It should be noted that the propellers and rudders which are shown in Figure 2 are selected from those 

of MARIN 7967 model. The principal dimensions of the hull, propeller and rudder are listed in Table 2.  

 
Fig. 2. Back view of the rudders and propellers of DTMB 5415. 

Table 2. Main particulars of the DTMB 5512 model. 

𝜆 = 1: 46.588 

𝐻𝑢𝑙𝑙  𝑃𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟𝑠 

𝐿𝑝𝑝(𝑚) 3.048  𝑁𝑢𝑚. 𝑜𝑓 𝐵𝑙𝑎𝑑𝑒𝑠 5 

𝐿𝑤𝑙(𝑚) 3.052  𝐷(𝑚) 0.132 

𝐵𝑤𝑙(𝑚) 0.409  𝑃 𝐷⁄ (0.7𝑅) 0.870 

𝑇(𝑚) 0.132  𝐴𝐸/𝐴0 0.580 

𝐶𝐵(−) 0.506  𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 Inward 

𝐶𝑀(−) 0.821  𝐻𝑢𝑏 𝑅𝑎𝑡𝑖𝑜 0.160 

𝐶𝑃(−) 0.617  𝑥𝑃
𝑃,𝑆/𝐿𝑝𝑝 -0.462 

𝐷𝑖𝑠𝑝. 𝑉𝑜𝑙. (𝑚3) 0.083  |𝑦𝑃
𝑃,𝑆|/𝐵𝑤𝑙  0.244 

𝑆(𝑚2) 1.369    

𝐿𝐶𝐵(%), 𝑓𝑤𝑑 + -0.683  𝑅𝑢𝑑𝑑𝑒𝑟𝑠 

𝐿𝐶𝐺(𝑚) -0.016  𝑆𝑝𝑎𝑛(𝑚) 0.094 

𝑇𝐶𝐺(𝑚) 0.000  𝐿𝑎𝑡. 𝐴𝑟𝑒𝑎(𝑚2) 0.007 

𝑉𝐶𝐺(𝑚) 0.084  𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 1.260 

𝐿/𝐵 7.452  𝐴𝑛𝑔𝑙𝑒 𝑤𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑥𝑖𝑠(𝑑𝑒𝑔) 15 

𝐵/𝑇 3.099  𝑥𝑅
𝑃,𝑆/𝐿𝑝𝑝 -0.472 

𝑈(𝑚 𝑠⁄ ) 1.531  |𝑦𝑅
𝑃,𝑆|/𝐵𝑤𝑙  0.249 

The simulation matrix for predicting hydrodynamic derivatives is built up with the test conditions of 

Yoon (2009) to validate the present CFD results. The static drift simulations are carried out for varying 

drift angles from 0° to 20°. Furthermore, two types of dynamic PMM simulations are performed. The 

pure yaw test is simulated for six maximum yaw rate up to 𝑟𝑚𝑎𝑥
′ = 0.75, while the yaw-drift simulation 

is performed for 𝛽 = 9°, 10°, 11° at a constant yaw rate, 𝑟𝑚𝑎𝑥
′ = 0.30.  ITTC (7.5-02 06-02 rev. 5; 2017) 

recommends PMM motion frequencies to be in a given range so that the harmonic motions do not get 

affected by the physical structure of the tank or the dynamic motion of the ship. These frequencies are 

categorized under three different non-dimensional oscillation frequencies (𝜔1
′ = 𝜔𝐿 𝑈⁄ , 𝜔2

′ =

𝜔√𝐿 𝑔⁄ , 𝜔3
′ = 𝜔 𝑈 𝑔⁄ ).  In the present numerical simulations, experimental test matrix of Yoon (2009) 

was followed and the frequencies adopted along with ITTC recommendations are shown in Table 3. 

The simulation matrix followed for estimating the propeller and the rudder parameters are given in 

Table 4. All simulations are carried out under the condition of 𝐹𝑟 = 0.25. For the verification and 

validation study, the selected cases are static drift at 𝛽 = 6°, pure yaw at 𝑟𝑚𝑎𝑥
′ = 0.30 and yaw-drift 

and drift at 𝑟𝑚𝑎𝑥
′ = 0.30, 𝛽 = 10°. 



Table 3. PMM motion frequencies and ITTC recommendations. 

 Present PMM ITTC Recommendations 

𝜔1
′  1.68~2.50 2 < 𝜔1

′ < 4 

𝜔2
′  0.40~0.71 𝜔2

′ ≠ 1∗ 

𝜔3
′  0.13~0.19 𝜔3

′ ≪ 0.25 

*This value represents the tank resonance which occurs at 𝜔2
′ = √𝜋𝐿 𝑏⁄ , where L is model length and b is tank width. 

Table 4. Simulation matrix for the estimation of hull-propeller-rudder interaction parameters. 

 𝑛𝑃(𝑟𝑝𝑠) 𝛿(𝑑𝑒𝑔) 𝛽(𝑑𝑒𝑔) 

Self-propulsion test 11.4 0 0 

Static rudder test 10.6; 11.4; 12.2 0, 10, 20, 30, 35 0 

Drift-rudder test 11.4 -20, -10, 0, 10, 20 0, 5 ,10 

3.2 Boundary Conditions and Grid Structure 
A large rectangular-shaped domain is generated for the simulations, where the boundaries extend 

to 1𝐿𝑝𝑝 upstream from fore-perpendicular, 3𝐿𝑝𝑝 downstream from the aft-perpendicular. It has 

1.5𝐿𝑝𝑝 distance to both sides from the centerline, 0.5𝐿𝑝𝑝 to top and 1.5𝐿𝑝𝑝 to bottom surfaces.  

 

  

  
Fig. 3. Mesh structure in the computational domain and around the hull surface. 



The origin of the ship-fixed coordinate system is located on the longitudinal center of gravity. The 

pressure outlet boundary condition is applied to the vertical border behind the vessel, while the inlet 

boundary condition is imposed for the rest of the boundaries, except that the symmetry boundary 

condition is used in the static drift simulations for the side walls. In addition, no-slip boundary condition 

is applied on the hull and rudder surfaces. A numerical wave damping is also applied to all boundaries 

except for the top and bottom surfaces to prevent the reflection of waves generated by ship motion. 

Moreover, a cylindirical domain is generated around the propellers, imposing an interface between 

the rectangular and cylindirical domains for the self-propulsion, static rudder and drift-rudder 

simulations. 

The computational grid used for the simulations is rigid and unstructured, which dominantly 

consists of hexahedral elements. The local refinement volumes for the hull vicinity, bow, stern, bilge 

keels and rudders are generated to improve the accuracy of the flow resolution. The mesh structure 

also includes an anisotropic vertical refinement around the free surface in order to capture the 

interface between air and water properly. Furthermore, prism layers are used on the hull and rudder 

surfaces to simulate the near-wall flow accurately, with achieving a 𝑦+ value of approximately 40 along 

the hull. Briefly; 2.37M mesh elements for the static drift simulation, 2.72M for the dynamic PMM 

simulations and 1.37 M for the self-propulsion, the static rudder and the drift-rudder simulations are 

generated. The grid structure used in the simulations are shown in different views shown in Figure 3. 

3.3 Calculation of Hydrodynamic Derivatives 
The hydrodynamic derivatives can be evaluated from the time histories based on the motion 

equations of the MMG model given in Eqn.2. For the results computed from the static drift simulations 

at different drift angles (𝑣), Eqn.2 can be simplifed as follows: 

𝑋𝐻 = −𝑋0 + 𝑋𝑣𝑣𝑣2 

𝑌𝐻 = 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣3 

𝑁𝐻 = 𝑁𝑣𝑣 + 𝑁𝑣𝑣𝑣𝑣3 

[15] 

where a quadratic function 𝑦(𝑣) = −𝑎 + 𝑏𝑣2 can be fitted for the 𝑋𝐻 values, while a cubic function 

𝑦(𝑣) = 𝑎𝑣 + 𝑏𝑣3 is needed to be curve-fitted to 𝑌𝐻 and 𝑁𝐻 values to calculate the hydrodynamic 

derivatives. Thus, 𝑎 = 𝑋0, 𝑌𝑣, 𝑁𝑣  and 𝑏 = 𝑋𝑣𝑣 , 𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣 are first determined. On the other hand, a 

third-order Fourier Series (FS) can be fitted to each time histories of the forces and moment obtained 

from harmonic pure yaw (𝜓 = −𝜓𝑚𝑎𝑥𝑐𝑜𝑠𝜔𝑡; 𝑟 = 𝑟𝑚𝑎𝑥𝑠𝑖𝑛𝜔𝑡) and yaw-drift simulations (𝜓 =

−𝜓𝑚𝑎𝑥𝑐𝑜𝑠𝜔𝑡 + 𝛽; 𝑟 = 𝑟𝑚𝑎𝑥𝑠𝑖𝑛𝜔𝑡; 𝑣 = −𝑈𝐶𝑠𝑖𝑛𝛽) as given in the following equation. 

𝑓(𝑡) = 𝑓0 + ∑ 𝑓𝐶𝑛

3

𝑛=1

cos(𝑛𝜔𝑡) + ∑ 𝑓𝑆𝑛

3

𝑛=1

sin(𝑛𝜔𝑡) [16] 

Here 𝜔 is the angular frequency of yaw motion (𝜔 = 2𝜋𝑓), 𝑓(𝑡) denotes the time histories of 𝑋𝐻, 𝑌𝐻 

and 𝑁𝐻, 𝑓𝑐𝑛 and 𝑓𝑠𝑛 are the 𝑛th-order 𝑠𝑖𝑛𝑒 and 𝑐𝑜𝑠𝑖𝑛𝑒 FS coefficients, respectively. Using 𝑌𝐻 as an 

example based on Eqn.2 , the simplified models and their harmonic forms are given in Eqns.17-18 for 

pure yaw and yaw-drift motions. 

𝑌𝐻 = 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟𝑟3 

𝑌𝐻 = 𝑌𝑆1𝑠𝑖𝑛𝜔𝑡 + 𝑌𝑆3𝑠𝑖𝑛3𝜔𝑡 

[17] 



𝑌𝐻 = 𝑌𝑣𝑣 + 𝑌𝑣𝑣𝑣𝑣3 + 𝑌𝑟𝑟 + 𝑌𝑟𝑟𝑟𝑟3 + 𝑌𝑣𝑟𝑟𝑣𝑟2 + 𝑌𝑣𝑣𝑟𝑣2𝑟 

𝑌𝐻 = 𝑌0 + 𝑌𝑆1𝑠𝑖𝑛𝜔𝑡 + 𝑌𝐶2𝑐𝑜𝑠2𝜔𝑡 + 𝑌𝑆3𝑠𝑖𝑛3𝜔𝑡 

[18] 

Similar equations can be derived for 𝑋𝐻 and 𝑁𝐻 following the same methodology. The FS 

coefficients shown in Eqns.17-18 are calculated by using Fourier-integral equation as follows: 

 
𝑋0, 𝑌0, 𝑁0 =

1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

𝑇

0

 
 

 
𝑋𝐶𝑛 , 𝑌𝐶𝑛 , 𝑁𝐶𝑛 =

2

𝑇
∫ 𝑓(𝑡)cos (𝑛𝜔𝑡)𝑑𝑡

𝑇

0

 [19] 

 
𝑋𝑆𝑛, 𝑌𝑆𝑛 , 𝑁𝑆𝑛 =

2

𝑇
∫ 𝑓(𝑡)sin (𝑛𝜔𝑡)𝑑𝑡

𝑇

0

 
 

where 𝑇 is the period of oscillating motion, 𝑇 = 2𝜋 𝜔⁄ . After calculation of FS coefficients, the 

hydrodynamic derivatives can be evaluated by utilizing the ‘Single-Run (SR)’ or the low-order ‘Multiple-

Run (MRL)’ methods (Yoon, 2009). For the SR method, there is no need to fit a function to the FS 

coefficients, so the derivatives can be calculated algebraically. However, MRL includes quadratic or 

cubic functions to be fitted with respect to kinematical parameters of interest such as 𝑣, 𝑟𝑚𝑎𝑥. It should 

be noted that the subscript “L” for the latter method (MRL) means only the low-order (0𝑡ℎ and 1𝑠𝑡) 

harmonics are used to determine hydrodynamic derivatives. The expressions for the hydrodynamic 

derivatives to be obtained with SR and MRL methods are shown in Table 5 and Table 6, respectively. 

Table 5. Determination of the hydrodynamic derivatives by SR method. 

Pure Yaw Yaw-Drift 

𝑋𝑟𝑟
′ = −

2

𝑟𝑚𝑎𝑥
′2 𝑋𝐶2

′  𝑋𝑣𝑟
′ =

1

𝑣′𝑟𝑚𝑎𝑥
′

𝑋𝑆1 

𝑌𝑟
′ =

1

𝑟𝑚𝑎𝑥
′

(𝑌𝑆1
′ + 3𝑌𝑆3

′ ) 𝑌𝑣𝑣𝑟
′ = (𝑌𝑆1

′ − 𝑌𝑟
′𝑟𝑚𝑎𝑥

′ −
3

4
𝑌𝑟𝑟𝑟

′ 𝑟𝑚𝑎𝑥
′3

)/𝑣2𝑟𝑚𝑎𝑥
′  

𝑁𝑟
′ =

1

𝑟𝑚𝑎𝑥
′

(𝑁𝑆1
′ + 3𝑁𝑆3

′ ) 𝑁𝑣𝑣𝑟
′ = (𝑁𝑆1

′ − 𝑁𝑟
′𝑟𝑚𝑎𝑥

′ −
3

4
𝑁𝑟𝑟𝑟

′ 𝑟𝑚𝑎𝑥
′3

)/𝑣2𝑟𝑚𝑎𝑥
′  

𝑌𝑟𝑟𝑟
′ = −

4

𝑟𝑚𝑎𝑥
′3 𝑌𝑆3

′  𝑌𝑣𝑟𝑟
′ = 2(𝑌0

′ − 𝑌𝑣
′𝑣′ − 𝑌𝑣𝑣𝑣

′ 𝑣′3
)/𝑣′𝑟𝑚𝑎𝑥

′2
 

𝑁𝑟𝑟𝑟
′ = −

4

𝑟𝑚𝑎𝑥
′3 𝑁𝑆3

′  𝑁𝑣𝑟𝑟
′ = 2(𝑁0

′ − 𝑁𝑣
′𝑣′ − 𝑁𝑣𝑣𝑣

′ 𝑣′3
)/𝑣′𝑟𝑚𝑎𝑥

′2
 

Table 6. Determination of the hydrodynamic derivatives by MRL method. 

Dynamic 

PMM Tests 

 

Dependent 

Variable 

 

Independent 

Variable 

 

Fitted 

Function 

 

Hydrodynamic Derivatives 

Pure Yaw 

𝑋0
′  𝑟𝑚𝑎𝑥

′  𝐴 + 𝐵𝑥2 𝑋∗
′ = 𝐴; 𝑋𝑟𝑟

′ = 2𝐵 

𝑌𝑆1
′ , 𝑁𝑆1

′  𝑟𝑚𝑎𝑥
′  𝐴𝑥 + 𝐵𝑥3 

𝑌𝑟
′, 𝑁𝑟

′ = 𝐴;  
𝑌𝑟𝑟𝑟

′ , 𝑁𝑟𝑟𝑟
′ = 4𝐵 3⁄  

     

Yaw-Drift 

𝑋𝑆1
′  𝑣′ 𝐴𝑥 𝑋𝑣𝑟

′ = 𝐴 𝑟𝑚𝑎𝑥
′⁄  

𝑌0
′, 𝑁0

′ 𝑣′ 𝐴𝑥 + 𝐵𝑥3 
𝑌𝑣𝑟𝑟

′ = 2(𝐴 − 𝑌𝑣
′)/ 𝑟𝑚𝑎𝑥

′2
; 

𝑁𝑣𝑟𝑟
′ = 2(𝐴 − 𝑁𝑣

′)/ 𝑟𝑚𝑎𝑥
′2

 

𝑌𝑆1
′ , 𝑁𝑆1

′  𝑣′ 𝐴 + 𝐵𝑥2 𝑌𝑣𝑣𝑟
′ , 𝑁𝑣𝑣𝑟

′ = 𝐵 𝑟𝑚𝑎𝑥
′⁄  

 

 



4. Verification and Validation 
A verification and validation (𝑉&𝑉) study is performed for the grid spacing to estimate the 

numerical uncertainty in the CFD simulations. In this study, a widely-used methodology proposed by 

Stern et al. (2001) for CFD simulation results is followed. The results of pure yaw at 𝑟𝑚𝑎𝑥
′ = 0.30, 

combined yaw and drift at 𝑟𝑚𝑎𝑥
′ = 0.30, 𝛽 = 10° and the static drift at 𝛽 = 6° are concerned. The 

𝑉&𝑉 study focuses on 𝑋′, 𝑌′ and 𝑁′ for the static drift test, while the convergence of FS coefficients 

(𝑋0
′ , 𝑌0

′, 𝑁0
′ , 𝑋𝑆1

′ , 𝑌𝑆1
′ , 𝑁𝑆1

′ ) is considered for the pure yaw and yaw-drift cases. Therefore, three 

different grid spacings are determined to evaluate the numerical uncertainty within the computed 

results. As it is hard to estimate the grid uncertainty (𝑈𝐺) in unstructured meshes, 𝑈𝐺  is estimated 

based on the Richardson extrapolation method (Simonsen et al., 2012). The results are obtained for 

the grid convergence with three mesh numbers based on the refinement ratio of √2 ≅ 1.414. This 

leads to the mesh sizes ranging from 1.2M to 5.4M for the static drift test, while it has a range of 1.4M 

to 5.8M for the dynamic PMM cases. As stated before, the time step size is selected as 0.04s for the 

static drift simulations and 0.01s for the pure yaw and yaw-drift simulations. All results of non-

dimensionalized forces, moment and FS coefficients for different grid spacings are given in Table 7. 

Table 7. Non-dimensional coeeficients computed with different number of grid elements for the 

static drift, pure yaw and yaw-drift simulations, Fr=0.280. 

Test Type Quantities Number of Elements EFD 

S
ta

ti
c 

D
ri

ft
, 

 𝛽
=

6
° 

 1.17M (𝑆3) 2.38M (𝑆2) 5.38M (𝑆1) Data (D) 

𝑋′ -0.01889 -0.01830 -0.01794 -0.01870 

𝑌′ 0.03662 0.03580 0.03522 0.03350 

𝑁′ 0.01675 0.01689 0.01681 0.01802 

     

P
u

re
 Y

aw
, 

𝑟 𝑚
𝑎

𝑥
′

=0
.3

0
 

 1.39M 2.73M 5.78M Data  

𝑋0
′  -0.01790 -0.01764 -0.01773 -0.01890 

𝑌𝑆1
′  -0.01706 -0.01770 -0.01794 -0.01595 

𝑁𝑆1
′  -0.01437 -0.01442 -0.01438 -0.01461 

     

Ya
w

-D
ri

ft
, 

𝑟 𝑚
𝑎

𝑥
′

=0
.3

0
 

𝛽
=

1
0

° 

 1.39M 2.73M 5.78M Data  

𝑋𝑆1
′  0.00065 -0.00069 -0.00124 -0.00463 

𝑌0
′ 0.06283 0.06591 0.06496 0.07102 

𝑁0
′ 0.03085 0.03240 0.03242 0.03333 

𝑌𝑆1
′  -0.02712 -0.02909 -0.02919 -0.02928 

𝑁𝑆1
′  -0.02075 -0.02172 -0.02146 -0.02151 

For the verification process, once the quantities are computed, the difference between the results 

of coarse-medium (𝑆3 − 𝑆2) and medium-fine (𝑆2 − 𝑆1) meshes, and the convergence ratio (𝑅𝐺,𝑇) is 

calculated as follows: 

𝜀𝐺32
= 𝑆3 − 𝑆2 

𝜀𝐺21
= 𝑆2 − 𝑆1 

𝑅𝐺 = 𝜀𝐺21
𝜀𝐺32

⁄  

[20] 

where the subcript ‘G’ refers to grid. Based on the value of 𝑅𝐺, four different conditions may occur: i) 

monotonic convergence (MC) for 0 < 𝑅𝐺 < 1; ii) oscillatory convergence (OC) for −1 < 𝑅𝐺 < 0; iii) 



monotonic divergence (MD) for 𝑅𝐺 > 1 and iv) oscillatory divergence (OD) for 𝑅𝐺 < −1. A generalized 

Richardson extrapolation (RE) technique is used for MC to estimate the uncertainties (𝑈𝐺) and errors 

(𝛿𝑅𝐸𝐺

∗ ), whereas only 𝑈𝐺  is calculated for the OC condition as given in the following way: 

𝑈𝐺 = |
1

2
(𝑆𝑈 − 𝑆𝐿)| [21] 

where 𝑆𝑈 and 𝑆𝐿 mean the upper and lower limits of oscillating solution, respectively. The numerical 

uncertainty and error can not be estimated for MD and OD conditions as the solutions diverge. For the 

condition of MC, the numerical error 𝛿𝑅𝐸𝐺1

∗  and the order of accuracy 𝑝𝐺  are estimated using the RE as 

follows: 

𝛿𝑅𝐸𝐺1
∗ =

𝜀𝐺21

𝑟𝐺
𝑝𝐺 − 1

 [22] 

𝑝𝐺𝑒𝑠𝑡 =
ln(𝜀𝐺32

𝜀𝐺21
⁄ )

ln(𝑟𝐺)
 [23] 

where 𝑟𝐺 is the refinement ratio which is considered as √2 for the variation of grid spacing. 

Furthermore, a correction factor (𝐶𝐺) is defined to correct Eqn.22 for the effects of higher order terms 

in the expression of RE, which is calculated as: 

𝐶𝐺 =
𝑟𝐺

𝑝𝐺 − 1

𝑟𝐺
𝑝𝐺𝑒𝑠𝑡 − 1

 [24] 

where 𝑝𝐺  is the theoretical order of accuracy for the numerical method, which is 2 in this study. If 𝐶𝐺 

is close to 1, which shows how close the solutions are to the asymptotic range, then the numerical 

error 𝛿𝑆𝑁
∗ , the benchmark result 𝑆𝐶  and the corrected grid uncertainty 𝑈𝐺𝐶

 can be calculated as follows 

(Simonsen et al., 2012). 

𝛿𝑆𝑁
∗ = 𝐶𝐺𝛿𝑅𝐸𝐺1

∗  [25] 

𝑆𝐶 = 𝑆 − 𝛿𝑆𝑁
∗  [26] 

𝑈𝐺𝐶
= {

(2.4(1 − 𝐶𝐺)2 + 0.1)|𝛿𝑅𝐸𝐺1
∗ |, |1 − 𝐶𝐺| < 0.125

             |1 − 𝐶𝐺||𝛿𝑅𝐸𝐺1
∗ |            , |1 − 𝐶𝐺| ≥ 0.125 

 [27] 

If the correction factor 𝐶𝐺 is sufficiently less or greater than 1, which indicates the solutions are not 

close to asymptotic range, the numerical error is calculated as given in Eqn.22 and the numerical 

uncertainty 𝑈𝐺  is estimated as given in Eqn.28.  

𝑈𝐺 = {
(9.6(1 − 𝐶𝐺)2 + 1.1)|𝛿𝑅𝐸𝐺1

∗ |, |1 − 𝐶𝐺| < 0.125

        (2|1 − 𝐶𝐺| + 1)|𝛿𝑅𝐸𝐺1
∗ |    , |1 − 𝐶𝐺| ≥ 0.125 

  [28] 

For the validation process, the absolute error |𝐸| between the EFD data and the CFD results is 

compared to the validation uncertainty 𝑈𝑉, which is calculated as: 

𝑈𝑉 = √𝑈𝐺
2 + 𝑈𝐷

2  [29] 

where 𝑈𝐷 is the total experimental uncertainty. In order to calculate validation uncertainty (𝑈𝑉), 𝑈𝐷 is 

taken from the experimental data of Yoon (2009). If the value of |𝐸| is found to be smaller than that 



of 𝑈𝑉, it means that the validation is achieved at the 𝑈𝑉  level. The results of verification and validation 

studies for the static drift, pure yaw and yaw-drift are shown seperately in Table 8,Table 9 and Table 

10, respectively. 

Table 8. 𝑉&𝑉 results for the static drift case at 𝛽 = 6°, 𝐹𝑟 = 0.280. 
 𝑋′ 𝑌′ 𝑁′ 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 MC MC OC 

𝜀𝐺21
 0.00036 -0.00057 -0.00008 

𝜀𝐺32
 0.00059 -0.00083 0.00014 

𝑅𝐺 0.61 0.69 -0.57 

𝑝𝐺𝑒𝑠𝑡  1.43 1.01 - 

𝐶𝐺 0.64 0.41 - 

𝑈𝐺%𝑆1 5.41 8.64 0.42 

𝑈𝐺𝐶
%𝑆1 1.16 2.37 - 

|𝐸|%𝐷 4.06 5.13 6.71 

𝑈𝑉%𝐷 5.52 9.71 2.82 

 

Table 9. 𝑉&𝑉 results for the pure yaw case at 𝑟𝑚𝑎𝑥
′ = 0.30, 𝐹𝑟 = 0.280. 

 𝑋0
′  𝑌𝑆1

′  𝑁𝑆1
′  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 OC MC OC 

𝜀𝐺21
 -0.00009 -0.00064 -0.00006 

𝜀𝐺32
 0.00026 -0.00024 0.00004 

𝑅𝐺 -0.35 0.38 -0.80 

𝑝𝐺𝑒𝑠𝑡  - 2.83 - 

𝐶𝐺 - 1.67 - 

𝑈𝐺%𝑆1 0.73 1.87 0.17 

𝑈𝐺𝐶
%𝑆1 - 0.53 - 

|𝐸|%𝐷 6.19 12.83 1.57 

𝑈𝑉%𝐷 7.63 2.12 1.21 

 

Table 10. 𝑉&𝑉 results for the yaw-drift case at 𝑟𝑚𝑎𝑥
′ = 0.30, 𝛽 = 10°,  𝐹𝑟 = 0.280. 

 𝑋𝑆1
′  𝑌0

′ 𝑁0
′ 𝑌𝑆1

′  𝑁𝑆1
′  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 MC OC MC MC OC 

𝜀𝐺21
 -0.00055 -0.00094 0.00001 -0.00009 0.00026 

𝜀𝐺32
 -0.00134 0.00308 0.00155 -0.00197 -0.00097 

𝑅𝐺 0.41 -0.31 0.02 0.05 -0.27 

𝑝𝐺𝑒𝑠𝑡  2.57 - 12.55 8.92 - 

𝐶𝐺 1.44 - 76.54 21.01 - 

𝑈𝐺%𝑆1 57.98 2.37 0.12 0.62 2.26 

𝑈𝐺𝐶
%𝑆1 9.35 - 0.06 0.29 - 

|𝐸|%𝐷 73.22 8.53 2.73 0.31 0.23 

𝑈𝑉%𝐷 16.88 4.28 2.01 3.75 3.01 

As shown in Tables 8-10, all quantities considered here converge as the computational mesh is 

refined. It should be noted that 𝑈𝑆𝑁 = 𝑈𝐺  is assumed for this study since the iteration uncertainty 𝑈𝐼  

is calculated smaller approximately two orders of magnitude than the corresponding 𝑈𝐺  value. 

Therefore 𝑈𝐼  values are ignored for all three grids.  For the static drift test, surge (𝑋′) and sway (𝑌′) 

forces show a monotonic convergence, while an oscillatory convergence is observed for yaw moment 

(𝑁′). For the static drift case, grid uncertainties 𝑈𝐺%𝑆1 are estimated for all the quantities within 9%. 

If the correction factor 𝐶𝐺 is used which is close to 1 for 𝑋′, the value of 𝑈𝐺  can be considered as 𝑈𝐺𝐶
=

1.16%. Concerning the grid uncertainities in pure yaw results, 𝑋0
′  and 𝑁𝑆1

′  converged oscillatory while 

𝑌𝑆1
′  has a monotonic type condition. Comparing 𝑈𝐺%𝑆1 values with those of static drift case, it is found 

very small for FS coefficients within 2%. It is not needed to use 𝐶𝐺 as the level of 𝑈𝐺%𝑆1 values is 

sufficiently small. On the other hand, five FS coefficients are considered for grid convergence study for 



the combined yaw and drift case. Similar to the grid uncertainty results of pure yaw case, 𝑈𝐺%𝑆1 values 

are estimated around 1-2% except for the 𝑋𝑆1
′  results. This is most likely due to the existence of phase 

shifts in time histories of surge force. However, if 𝐶𝐺 value is assumed to be close to 1, then the grid 

uncertainty can be corrected as 𝑈𝐺𝐶
= 9.35%.  

The validation process is done using the comparison of relative error between the simulation result 

and experimental data, and validation uncertainty 𝑈𝑉  as shown in Tables 8-10. If the error |𝐸| is smaller 

than 𝑈𝑉, it means that the simulation results are not validated. As given in Eqn. 9, the experimental 

uncertainty 𝑈𝐷 should be included if it exists to calculate 𝑈𝑉. The validation of error |𝐸| is achieved for 

𝑋′ and 𝑌′ at the level of 𝑈𝑉 = 5.52%𝐷 and 9.71%𝐷 in the static drift simulation while it is achieved 

at 7.63%𝐷 for only 𝑋0
′  in pure yaw. For the yaw-drift case, the validation of comparison error |𝐸| for 

𝑌𝑆1
′  and 𝑁𝑆1

′  is obtained at the level of 𝑈𝑉 = 3.75%𝐷 and 3.01%𝐷, respectively. 

5. Numerical Results 
Hydrodynamic forces and moment acting on the hull, propeller and rudder are numerically obtained 

from CFD simulations and presented in this section. Results obtained from static drift, dynamic PMM, 

self-propulsion and rudder simulations are used to calculate the relevant hydrodynamic derivatives. 

These derivatives are then used to draw the trajectory of the ship at specified conditions in turning 

circle and zigzag maneuvering tests. 

5.1 Hull Forces and Moment 
Hydrodynamic forces and moment acting on the ship is first computed by performing static drift, 

pure yaw and combined yaw-drift tests to evaluate the hydrodynamic derivatives in the MMG model. 

The predicted force and moment results are validated with those of experimental data from Yoon, 

2009.  

5.1.1 Static Drift  
Static drift simulations are relatively easier to handle as compared to the PMM tests. However, 

resolution of free water surface still has problems that could alter the forces and moment acting on 

the ship (Kinaci et al., 2016). Therefore, the wave cut values computed numerically has been validated 

with the experimental data given in Yoon et al. (2014). The comparison is given in Figure 4. It can be 

noted that the computed wave elevation at the given location is in satisfactory agreement with EFD 

data, except for bow region. 

 

Fig. 4. Comparison of free surface elevations at y/L=0.082, β=0°, Fr=0.280.   



The dimensionless forces and moment obtained at different drift angles (𝛽) for static condition are 

compared with measured data as shown in Figure 5. Hull drift angle was changed from 0° to 20° as in 

the experiments. The variation in drift angle causes an increase in the sway force and yawing moment 

during the static drift simulations where the asymmetric flow occurs around the hull. It can be noted 

that the computed forces are in good agreement with EFD data, however there is a slight discrepancy 

between the results of EFD and CFD as the drift angle is becoming larger. The average relative errors 

(𝐸̅%𝐷) of 𝑋′, 𝑌′and 𝑁′at 𝐹𝑟 = 0.280 are found as 3.9%, 8.9% and 7.8%, respectively. The reason for 

underestimation of 𝑌′and 𝑁′at higher drift angles might be due to inaccurate prediction of flow 

separations and vortical flow structures around the hull. Experimental and numerical flow 

investigations for these inaccurate predictions at higher drift angles have become a popular research 

topic in recent years (Bhushan et al., 2011; Xing et al., 2012; Falchi et al., 2014).  

  
Fig. 5. Comparison of predicted hydrodynamic forces and yawing moment results with measured 

data (Yoon, 2009) for different drift angles (𝑣′ =  −𝑠𝑖𝑛𝛽). 

5.1.2 Pure Sway and Yaw  
In dynamic PMM simulations such as pure sway, pure yaw or combined yaw-drift, all forces and 

moments are to be analyzed from the third or subsequent cycles to avoid transverse effects at the 

beginning of the simulation (Shenoi et al., 2014). However in this study, it has been observed that the 

time histories of the second and third periods are almost same. Hence the results reported here for 

dynamic PMM simulations are from the second period of PMM to keep the computational time as 

short as possible. 

The pure sway simulations were performed at three different maximum sway velocities (𝑣𝑚𝑎𝑥
′ ) at 

𝐹𝑟 = 0.280. In the pure sway simulations, the primary focus is to estimate the sway-acceleration 

derivative (𝑌𝑣̇
′). First, the local flow field around the hull at different locations (𝑥 𝐿⁄ =

0.135;  0.235;  0.735;  0.935) and phases (𝛾 = 0°; 90°) in pure sway simulation was estimated by CFD 

and compared with measured PIV results (Yoon, 2009) in terms of dimensionless axial velocity (𝑈). 

Figure 6 shows the contours where the sway velocity (𝑣′) reaches its maximum (at 𝛾 = 0°) and 

minimum (at 𝛾 = 90°) values. The predicted contours generally show good agreement with PIV data 

at both phase angles; the major difference between the two contours is in vortex cores. This flaw might 

be handled by increasing the grid resolution around the hull. The sway added mass (𝑚𝑦
′ ) and moment 

of inertia (𝐽𝑧
′ ) terms are obtained by pure sway and pure yaw simulations, and an empirical formula 

proposed by Zhou et al. (1983) based on the charts given by Motora (1958) and Motora (1960a,b). In 

this study, 𝑚𝑥
′  is taken as 5% of ship mass (𝑚′ = 0.1394) as suggested by Clarke et al. (1983), while 𝑚𝑦

′  

and 𝐽𝑧
′
 which equal to −𝑌𝑣̇

′
 and −𝑁𝑟̇

′
 respectively, were determined by performing pure sway and yaw 



simulations as given in Table 11. It can be said that the present CFD results show a reasonable 

agreement with the empirical result and EFD data. 

Table 11. Comparison of added mass and moment of inertia obtained with different methods. 

 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝐶𝐹𝐷  𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 (Zhou et al. ,1983)   𝐸𝐹𝐷 (𝑌𝑜𝑜𝑛, 2009) 

𝑚𝑦
′  0.1082  0.1257  0.1135 

𝐽𝑧
′  0.0078  0.0098  0.0070 

 

 

  

Fig. 6. Comparison of axial velocities at different motion phases in pure sway for Fr=0.280. 

In pure yaw simulation, the main purpose is to estimate the hydrodynamic derivatives such as 

𝑋𝑟𝑟
′ , 𝑌𝑟

′, 𝑌𝑟𝑟𝑟
′ , 𝑁𝑟

′, 𝑁𝑟̇
′, 𝑁𝑟𝑟𝑟

′ . Therefore, the time histories of the forces and moment over one PMM 

period are predicted by CFD simulations and the results are compared with EFD data in Figure 7 for six 

different 𝑟𝑚𝑎𝑥
′  values. The overall trend indicates that the numerical results are compatible with EFD 

data for the sway force and yawing moment. It is also noted that the peak values for the sway force 

and yawing moment increase with an increment in 𝑟𝑚𝑎𝑥
′ . 



  
Fig. 7. Comparison of predicted values with EFD data (Yoon, 2009) in pure yaw motion for different 

𝑟𝑚𝑎𝑥
′  values. 

The average values of 𝑋′ are given in Figure 8 since showing all time histories of surge force for 

different 𝑟𝑚𝑎𝑥
′  values in a single figure may lead to a confusion. Although there are some slight phase 

shifts in the surge force, the average values of time histories agree well with the EFD within an average 

deviation of 6.7% (𝐸̅%𝐷). It was stated by (Woolliscroft and Maki, 2016) that the phase shifts in surge 

force may occur due to turbulence modelling, wall functions or boundary conditions. From Figure 8, 

although it is seen that CFD underestimates the surge force, a similar trend can be observed for both 

methods as 𝑟𝑚𝑎𝑥
′  increases. 

 
Fig. 8. Comparison of average surge forces in pure yaw motion for different 𝑟𝑚𝑎𝑥

′  values. 

5.1.3 Combined Yaw and Drift 
In the combined yaw-drift test, the model still performs a yaw motion but has a fixed drift angle at 

the same time. The purpose here is to estimate the cross-coupled derivatives such as, 

𝑋𝑣𝑟
′ , 𝑌𝑣𝑣𝑟

′ , 𝑌𝑣𝑟𝑟
′ , 𝑁𝑣𝑣𝑟

′ , 𝑁𝑣𝑟𝑟
′ . Comparison of  𝑌′ and 𝑁′ values for different yaw-drift simulations are 

plotted in Figure 9. Unlike the pure yaw test, asymmetric side force and yawing moment results are 

observed during the motion because of the effect of drift angle. It seems that the trend of the curves 

is similar to each other and the experimental data satisfactorily captured by CFD. Moreover, the 



amplitude of side force and yawing moment increase as the drift angle increases. Note that the non-

dimensional maximum yaw rate (𝑟𝑚𝑎𝑥
′ ) is kept fixed at 𝑟𝑚𝑎𝑥

′ = 0.3 for all yaw-drift simulations. 

  
Fig. 9. Comparison of predicted sway force and yawing moment with EFD data (Yoon, 2009) in yaw-

drift simulation. 

For surge force, neither the general trend of the curves nor their peaks are match. The mismatch 

may partly be attributed to the experimental noise. Relative differences (𝐸%𝐷) of the average surge 

force results are calculated as 3.2%, 3.9% and 6.3% for 9, 10, 11 degrees of drift angles, respectively. 

  

5.2 Propeller Force 
The reference ship is fitted with two inward-rotating propellers, which both have the same distance 

to the centerline of the ship. Therefore, lateral side forces due to propellers can be assumed to cancel 

out each other (𝑌𝑃
𝑃,𝑆 = 0). The only hydrodynamic force generated by the propellers is the surge force 

(𝑋𝑃
𝑃,𝑆). The self-propulsion test is performed by taking the free surface effect into consideration to 

predict the thrust, propeller revolution and hull-propeller interaction factors.  

Open water characteristics of the propellers (𝑘0, 𝑘1, 𝑘2) in the calculation of 𝐾𝑇 are taken from the 

experimental data of MARIN (https://simman2014.dk). The propeller revolutions under the self-

propulsion point of the model are estimated by CFD for 𝐹𝑟 = 0.25. 𝑡𝑃 is determined by considering 

the resistance results of bare hull and self-propulsion simulations, while 𝑤𝑃0 is found from the open 

water characteristics by applying the thrust identity method (ITTC, 7.5-02 03-01.4). It is assumed that 

all parameters obtained for port side propeller are same as the starboard side since they have identical 

geometry. The results predicted for the propeller force at full scale are summarized in Table 12. 

Table 12. Predicted parameters for propeller force at full scale for 𝐹𝑟 = 0.25. 
Parameters Source Value 

𝑘0
𝑃,𝑆

 MARIN test data 0.3984 

𝑘1
𝑃,𝑆

 MARIN test data -0.2997 

𝑘2
𝑃,𝑆

 MARIN test data -0.1405 

𝑛𝑃
𝑃,𝑆

(rps) Self-propulsion simulation 1.65 

𝑡𝑃
𝑃,𝑆

 Resistance and self-propulsion simulation 0.21 

𝑤𝑃0
𝑃,𝑆

 Thrust identity method 0.0726 

 

 



5.3 Rudder Forces and Moment 
The hull-rudder interaction parameters such as 𝑡𝑅, 𝑎𝐻, 𝑥𝐻

′  are calculated by performing static 

rudder simulations (𝛽 = 0°) at constant propeller revolution (𝑛𝑃
𝑃,𝑆 = 11.4 𝑟𝑝𝑠). In the simulations, the 

rudder angles vary from 0° to 35°. The interaction coefficients found are assumed to be equal for both 

rudders. Figure 10 shows the change of hydrodynamic forces and moment with respect to the 

longitudinal and lateral components of rudder normal force.  

For a twin rudder system, Kang et al. (2008) shows that 𝑡𝑅 does not change with the propeller load, 

whereas a slight variation is observed for 𝑎𝐻 and 𝑥𝐻
′ . In this study, this variation is neglected and all 

interaction coefficients are determined under 𝑛𝑃
𝑃,𝑆 = 11.4 𝑟𝑝𝑠 which is the representative propeller 

revolution of the reference ship. According to Eqn.8, the hull-rudder interaction coefficients can be 

determined utilizing the slopes of the fitting curves shown in Figure 10. The slope of the 𝑋 − 𝐹𝑁𝑠𝑖𝑛𝛿 

curve gives (1 − 𝑡𝑅), while 𝑎𝐻 is calculated from the slope of 𝑌 − 𝐹𝑁𝑐𝑜𝑠𝛿. 𝑡𝑅 here denotes the 

deduction in the resistance of rudders and 𝑎𝐻 represents the increment in the lateral force acting on 

the hull due to steering (Yasukawa and Yoshimura, 2015). Longitudinal acting position of 𝑎𝐻 is defined 

as 𝑥𝐻
′  and it is generally given in nondimensional form. Using the known values of 𝑎𝐻 and the 

longitudinal position of the rudders at the stern part of the ship, 𝑥𝑅
′ = −0.4718, 𝑥𝐻

′  can be obtained 

easily by the slope of 𝑁 − 𝐹𝑁𝑐𝑜𝑠𝛿 curve which gives (𝑥𝑅
′ + 𝑎𝐻𝑥𝐻

′ ). From the numerical results depicted 

in Figure 10, the hull-rudder interaction coefficients are calculated as 𝑡𝑅 = 0.4404, 𝑎𝐻 = 0.0858 and 

𝑥𝐻
′ = −0.4357, where the minus sign means that the action point of 𝑎𝐻 is located at the aft side of 

the ship. In Figure 10, 𝐹𝑁 represents the total rudder normal force which is the summation of 𝐹𝑁
𝑃 and 

𝐹𝑁
𝑆; 𝐹𝑁 = 𝐹𝑁

𝑃 + 𝐹𝑁
𝑆. Also the independent (y) and dependent (x) variables of equations given in the 

following figures show the corresponding values on y and x axis, respectively. 

 

 
Fig. 10. Static rudder simulations for hull-rudder interaction parameters. 



  
Fig. 11. 𝐹𝑁

𝑃,𝑆 values in straight motion for rudder angles under different propeller loads.  

In order to calculate the rudder normal force (𝐹𝑁) given in Eqn.9 , longitudinal and lateral 

components of the rudder inflow velocity has to be determined. In Eqn.13, wake fraction ratio at 

propeller plane and rudder (𝜀) and the experimental constant (𝜅) are the unknowns that need to be 

estimated. These values can be predicted from the static rudder tests under various propeller loads. 

Fig.11 shows the results of static drift simulations under various propeller loads. The symbols present 

the predicted values by CFD, while the lines indicate the linear fitting curves to computed values. The 

coefficients 𝜀 and 𝜅 are obtained using the slopes of 𝐹𝑁-𝛿 curves at 𝛿 = 0 for both rudders shown in 

Figure 11 and the relation between 𝑢𝑅
′ 𝑢𝑃

′⁄  and √1 + 8𝐾𝑇 𝜋𝐽𝑃
2⁄ − 1 shown in Figure 12.  Subsequently, 

the procedure presented by Yasukawa and Yoshimura (2015) is followed here to calculate 𝑢𝑅
′ .  

 
Fig. 12. Ratio of the inflow velocities of rudder and propeller at different propeller loads. 

Utilizing the relation between 𝑢𝑅
′ 𝑢𝑃

′⁄  and √1 + 8𝐾𝑇 𝜋𝐽𝑃
2⁄ − 1 as shown in Figure 12, Eqn.13 can be 

solved. The ratio of propeller diameter to rudder span is taken as 𝜂 = 1.3457. As a result, 𝜀 and 𝜅 are 

determined as 0.89 and 0.50 for the port side rudder, and 0.90 and 0.59 for the rudder at starboard 

side, respectively. 

The flow straightening factor due to sway velocity, 𝛾𝑅, is determined separately for the port and 

starboard rudders from the drift-rudder simulations, while the flow straightening factor due to the yaw 

rate of ship is assumed as 𝑙𝑅
′ = 2𝑥𝑅

′ .  Although it is shown that the coefficients 𝛾𝑅 and 𝑙𝑅
′  are slightly 



asymmetric for the port and starboard turnings for TPTR ships (Kang et al., 2008), they are assumed to 

be symmetrical in this study. According to Eqn.11 given for TPTR ships (Khanfir et al, 2011), the 

effective rudder angles (𝛿𝑅
𝑃,𝑆) at which the rudder normal force equals to zero, should be obtained at 

different drift angles. Initially, the rudder normal forces versus various rudder angles are curve fitted 

for different drift angles. Subsequently, the rudder angles which return zero rudder normal force are 

determined from the fitted curves for both rudders. It is obvious from Figure 13 that the rudder normal 

force has different tendency for the port and starboard rudders. The variation in the rudder normal 

force shows that there is an asymmetric flow on the rudders in maneuvering motions for TPTR ships. 

Finally, the effective rudder angles versus various drift angle are fitted with the linear curves, and the 

slope of the fitted curves give the 𝛾𝑅
𝑃,𝑆.  

  
Fig. 13. Rudder normal force for varying rudder angles at different drift simulation. 

In Figure 14, only the effective rudder angles (𝛿𝑅
𝑃,𝑆) in starboard side during maneuvering are shown 

and 𝛽𝑅 given in Eqn.12 is taken as 𝛽 since the yaw rate (𝑟′) of the ship is zero for drift-rudder 

simulations. In this study, it is presumed that 𝛿𝑅
𝑆 in the starboard side maneuvering (𝛽 > 0) is equal to 

−𝛿𝑅
𝑃 in the port side maneuvering, where a similar assumption was made in the study of Kim et al. 

(2007) for a TPTR ship. It is also noted that the same assumption is made for the coefficient 𝛾𝑅 in 

maneuvering motions. Consequently, all parameters computed from the static rudder and drift-rudder 

simulations for the prediction of rudder force are given in Table 13. It is worthy note here that 𝜀 and 𝜅 

values of rudders are different for port and starboard sides. It is normal for rudders of a TPTR ship to 

have different values because of the asymmetric incoming flow (Umeda et al., 2014).  

Table 13. Parameters obtained by CFD for calculating the rudder forces in maneuvering motions. 
Parameters Rudder (Starboard) Rudder (Port) 

𝑎𝐻 0.0858 0.0858 

𝑡𝑅 0.4404 0.4404 

𝑥𝐻
′  -0.4371 -0.4371 

𝜀 0.90 0.89 

𝜅 0.59 0.50 

𝛾𝑅 (𝛽𝑅 < 0) 0.5317 0.3713 

𝛾𝑅 (𝛽𝑅 > 0) 0.3713 0.5317 

𝑙𝑅
′  -0.9436 -0.9436 

 



 

Fig. 14. The effective rudder angles where the rudder normal force is zero at different drift angles. 

 

5.4 Hydrodynamic Derivatives 
In order to obtain the resistance coefficient 𝑋0, and sway-velocity dependent hydrodynamic 

derivatives such as 𝑌𝑣 , 𝑁𝑣, 𝑋𝑣𝑣 , 𝑌𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑣, the forces and moment obtained from the static drift 

simulations are curve fitted to polynomial functions by the least square method as shown in Eqn.15. 

The predicted derivatives are compared with the published CFD results (Sakamoto et al., 2012) and the 

EFD data (Yoon, 2009), as listed in Table 14. The linear derivatives are predicted numerically closer to 

measured data compared to higher order derivatives, which are generally difficult to estimate 

accurately. However, it can still be stated that all derivatives by the present CFD are in a good 

agreement with (Sakamoto et al., 2012) and (Yoon, 2009). 

Table 14. Comparison of the hydrodynamic derivatives obtained from the static drift test. 

Hydrodynamic 
Derivatives 

 Fr = 0.280 

 Present CFD CFD-Sakamoto  EFD-Yoon E%D 

𝑋0
′   -0.0161 - -0.0170 -5.3 

𝑋𝑣𝑣
′   -0.1823 -0.1480 -0.1528 19.3 

𝑌𝑣
′  -0.2937 -0.3120 -0.2961 -0.9 

𝑌𝑣𝑣𝑣
′   -1.1735 -1.5370 -1.9456 -39.7 

𝑁𝑣
′  -0.1622 -0.1510 -0.1667 -2.7 

𝑁𝑣𝑣𝑣
′   -0.2252 -0.2340 -0.4355 -48.3 

For the pure yaw and yaw-drift simulations, the hydrodynamic derivatives are obtained by analyzing 

the time histories of forces and moment using the Fourier series (FS) method which is suitable for the 

motions prescribed by sine and cosine functions. FS coefficients are obtained using the formula given 

in Eqn.19. In this study, low order ‘Single-Run (SR)’ and ‘Multiple-Run (MRL)’ (Yoon et al., 2015) 

approaches are used to evaluate the hydrodynamic derivatives and the effects of these two methods 

on turning and zigzag maneuvers are compared with each other. In the former method (SR), there is 

no need to fit a function to determined FS coefficients, thus the derivatives can be calculated 

algebraically. The latter includes quadratic or cubic functions to be fitted to the FS coefficients with 

respect to the parameters of interest such as 𝑣𝑚𝑎𝑥
′ , 𝑟𝑚𝑎𝑥

′ . By using the expressions given in Table 6 for 

the MRL method, the yaw-rate dependent and cross-coupled hydrodynamic derivatives are obtained 

and compared with the numerical (Sakamoto et al., 2012) and experimental (Yoon et al., 2015) results, 

as listed in Table 15. Here, it should be noted that the pure yaw simulations by Sakamoto et al., 2012 

are performed up to 𝑟𝑚𝑎𝑥
′ = 0.60, whereas the results given for the present study and experimental 



data are obtained up to 𝑟𝑚𝑎𝑥
′ = 0.75. All cross-coupled derivatives given in Table 15 are determined 

at a constant yaw rate (𝑟𝑚𝑎𝑥
′ = 0.30) with 𝛽 = 9°, 10°, 11°. Moreover, the ratios of hydrodynamic 

derivatives by SR method to MRL method are shown in Figure 15. A ratio of 1 between SR and MRL 

presents compatible agreement. In terms of linear rotary derivatives (𝑌𝑟
′, 𝑁𝑟

′) SR method is close to MRL 

method. However this is not the case for the non-linear ones, 𝑋𝑟𝑟
′  and 𝑌𝑟𝑟𝑟

′ , especially at the smallest 

𝑟𝑚𝑎𝑥
′  value, the ratio of the derivatives nearly go up to 20. It can also be deduced from Figure 15 that 

the cross-coupled derivatives by the SR method agree well with those of 𝑀𝑅𝐿  for all 𝛽 values except 

for the values of  𝑁𝑣𝑟𝑟
′ . 

   

 3  
Fig. 15. Ratio of hydrodynamic derivatives predicted by SR and MRL methods. (A ratio of 1 

between SR and MRL presents compatible agreement.) 

Table 15. Comparison of hydrodynamic derivatives obtained from pure yaw and yaw-drift tests by 

MRL method. 

Hydrodynamic 
Derivatives 

 Fr = 0.280  

 Present CFD-Sakamoto  EFD-Yoon E%D 

𝑋𝑟𝑟
′ + 𝑚′𝑥𝐺

′   -0.0280 -0.0293 -0.0282 -0.7 

𝑌𝑟
′ − 𝑚′ − 𝑚𝑥

′   -0.0536 -0.0420 -0.0485 10.5 
𝑌𝑟𝑟𝑟

′   -0.0519 -0.0190 -0.0452 14.8 
𝑁𝑟

′ − 𝑚′𝑥𝐺
′   -0.0439 -0.0420 -0.0485 -9.5 

𝑁𝑟𝑟𝑟
′   -0.0479 -0.0320 -0.0505 -5.1 

𝑋𝑣𝑟
′ + 𝑚′ + 𝑚𝑦

′   0.0152 -0.0953 0.0819 -83.4 

𝑌𝑣𝑟𝑟
′   -0.7844 -39.9200 -2.0198 -57.9 

𝑌𝑣𝑣𝑟
′   -1.5063 -1.6140 -1.8819 -28.4 

𝑁𝑣𝑟𝑟
′   -0.2177 -7.6473 -0.6891 -74.5 

𝑁𝑣𝑣𝑟
′   -0.7997 -0.3995 -0.4367 72.6 



5.5 Maneuvering Simulations 
Maneuvering performance of the ship is evaluated by selecting −35° turning and −20°/−20° 

zigzag tests to verify the validity of the maneuvering coefficients determined by both SR and MRL 

methods. Since the hydrodynamic derivatives calculated by the SR method can be obtained at more 

than one 𝑟𝑚𝑎𝑥
′  and 𝛽 values, the turning and zigzag maneuvers are simulated using the SR combinations 

shown in Table 16. Note that the hydrodynamic derivatives computed from the static drift test are 

kept constant in the combinations generated, whereas only the values of derivatives obtained from 

the dynamic tests alter according to the 𝑟𝑚𝑎𝑥
′  and 𝛽 values. The free maneuvering simulations are 

performed using a 3-DOF MMG mathematical model proposed by Yasukawa and Yoshimura (2015).  

Table 16. SR combinations used in the turning and zigzag maneuvers. 
 𝛽 = 9°, 𝑟𝑚𝑎𝑥

′  = 0.30   𝛽 = 10°, 𝑟𝑚𝑎𝑥
′  = 0.30  𝛽 = 11°, 𝑟𝑚𝑎𝑥

′  = 0.30 

𝑟𝑚𝑎𝑥
′  = 0.05 𝑆𝑅1  𝑆𝑅7  𝑆𝑅13 

𝑟𝑚𝑎𝑥
′  = 0.15 𝑆𝑅2  𝑆𝑅8  𝑆𝑅14 

𝑟𝑚𝑎𝑥
′  = 0.30 𝑆𝑅3  𝑆𝑅9  𝑆𝑅15 

𝑟𝑚𝑎𝑥
′  = 0.45 𝑆𝑅4  𝑆𝑅10  𝑆𝑅16 

𝑟𝑚𝑎𝑥
′  = 0.60 𝑆𝑅5  𝑆𝑅11  𝑆𝑅17 

𝑟𝑚𝑎𝑥
′  = 0.75 𝑆𝑅6  𝑆𝑅12  𝑆𝑅18 

Derivatives by SR and MRL methods are tested in an in-house code (MANSIM) that utilizes the MMG 

mathematical model. In order to determine which SR combination gives the closest results to EFD data 

in the turning maneuver, the average absolute deviation of parameters such as advance (𝐴𝑇
′ ), transfer 

(𝑇𝑇
′ ), tactical diameter (𝑇𝐷𝑇

′ ), diameter in steady turn (𝐷𝑇
′ ), steady yaw rate (𝑟𝑇

′ ) and steady turning 

speed (𝑈𝑇
′ ) are taken into consideration. In addition, the average absolute deviation of first and second 

overshoot angles (𝑂𝐴1𝑠𝑡, 𝑂𝐴2𝑛𝑑) are calculated for the zigzag maneuver. The comparison of the results 

by using 12 different SR combinations and MRL method is shown in Figure 16. Some combinations are 

not shown in Figure 16 as they failed to resolve the equations of motion due to inaccurate prediction 

of the hull forces and moment, thus they did not give reasonable results. When the average deviations 

are compared, it can be seen that SR4 which includes the derivatives from the pure yaw analysis with 

𝑟𝑚𝑎𝑥
′ = 0.45 and yaw-drift analysis with minimum 𝛽 value gives the closest result to the EFD data. It 

can also be stated that the average deviations for both results of SR and MRL are getting smaller as 𝛽 

value in the yaw-drift simulations decreases.  

 
Fig. 16. Average absolute deviations (𝐸̅%𝐷) for turning and zigzag tests by SR and MRL methods. 
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After finding the best option in combinations from Figure 16, the hydrodynamic derivatives from 

SR4 combination are used to generate turning and zigzag maneuvers and compared the average 

relative errors of maneuvering indices with those of MRL. The Euler algorithm is applied to simulate 

the maneuvers and time step is set to be ℎ = 0.1𝑠. The rudder is deflected with a constant deflection 

rate of 9°/𝑠 as in the experiment until the maximum rudder angle is reached. Figure 17 shows the 

comparison of predicted turning trajectory and time histories of the kinematical parameters (𝑟, 𝑈, 𝛽) 

with the free running data from MARIN at 𝐹𝑟 = 0.25 in full scale. Although both methods (SR and MRL) 

slightly overestimate the turning trajectory with respect to free-running data, the turning trajectory 

and other kinematical parameters obtained by the SR method agree well with the MRL results. 

  

   
Fig. 17. Comparison of predicted trajectories and kinematic parameters of turning maneuver with 

MARIN free running data. 

Table 17. Comparison of the predicted turning indices with MARIN free running data. 

 𝐸𝐹𝐷 𝑀𝑅𝐿 𝑆𝑅4 𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝐸𝑀𝑅%𝐷 𝐸𝑆𝑅%𝐷 

𝐴𝑇
′  2.71 2.67 2.61 2.55 -1.5 -3.7 

𝑇𝑇
′  1.46 1.78 1.72 1.15 21.9 17.8 

𝑇𝐷𝑇
′  3.65 3.92 3.74 2.83 7.9 2.4 

𝐷𝑇
′  3.66 3.91 3.69 2.69 6.9 0.8 

𝑟𝑇
′  -0.38 -0.41 -0.44 - 5.2 15.6 

𝑈𝑇
′  0.75 0.80 0.83 0.62 6.7 10.7 

|𝐸̅|%𝐷     8.3 8.5 



The comparison of turning indices are shown in Table 17. Reasonable agreement is achieved for the 

MRL method with an average deviation of 8.3% ,and the best SR method (see Fig. 16) capture the free 

running data with an average deviation of 8.5%. Table 17 also covers results obtained by empirical 

equations stated for twin propeller ships by (Lyster and Knights; 1979). Investigating all the results 

given in the table, it might be stated that the empirical relations provided by (Lyster and Knights; 1979) 

can be a good alternative for primary calculations of ship maneuvering. 

Figure 18 and Table 18 depicts the comparison of results predicted by SR4 and MRL methods with 

the free running data of zigzag maneuver, where the heading and rudder angles, and the trajectories 

are shown. The rudder period in the first cycle is captured well by both SR and MRL methods, however 

the difference in the second cycle with the free running data, leading to a phase difference for the 

heading angle and the trajectory. On the whole, the results obtained in the turning and zigzag 

maneuver by SR method presented almost the same level of magnitude with the MRL method when 

appropriate PMM conditions are adopted.  

  
Fig. 18. Comparison of the trajectories and kinematic parameters of zigzag maneuver with the 

MARIN free running data. 

Table 18. Comparison of the predicted zigzag indices with MARIN free running data. 

 𝐸𝐹𝐷 𝑀𝑅𝐿 𝑆𝑅4 𝐸𝑀𝑅%𝐷 𝐸𝑆𝑅%𝐷 

𝑂𝐴1𝑠𝑡 (deg) 4.70 4.15 3.94 -11.7 -16.2 
𝑂𝐴2𝑛𝑑 (deg) 4.80 4.69 4.62 -2.3 -3.8 

|𝐸̅|%𝐷    7.0 10.0 

 

6. Conclusions 

In this study, maneuvering performance of a twin-propeller and twin-rudder ship was numerically 

simulated. A modular MMG mathematical model was implemented. Static drift, pure yaw, yaw and 

drift and rudder tests were numerically carried out for DTMB 5415 surface combatant at 𝐹𝑟 = 0.28 

utilizing a RANSE based CFD solver. Self-propulsion point of the ship was calculated by numerical self-

propulsion tests to obtain the rotation rate of the propeller during maneuvering at 𝐹𝑟 = 0.25. 

Results of the present study agree well with experimental and another numerical result found in 

the literature for static drift and PMM tests. Propeller forces were calculated by numerical self-

propulsion tests and rudder forces by simulating static rudder and combined rudder- drift tests. These 



forces can implicitly be validated by comparing the turning circle and zigzag maneuvers obtained either 

by experiments or by CFD-based methods. However; due to the nature of system-based methods such 

as the one adopted in this paper, additional validations regarding the propeller and rudder should be 

made. 

Hydrodynamic derivatives from PMM tests were obtained by two different methods; the single-run 

method and the multiple-run method. It was found out that the derivatives obtained by the single-run 

method generate the turning and zigzag maneuvering motions very close to that generated by the low-

order multiple-run method. From the practical point of view, hydrodynamic derivatives can be 

determined with SR method by performing only one CFD simulation, providing an advantage in terms 

of computational time. However, performance of the single-run method was not satisfactory for all 

PMM test conditions in the maneuvering tests. If single-run method is to be used; then special 

attention must be paid when selecting the PMM test conditions. Similar studies are planned as future 

studies for other benchmark ships to validate the findings of this study. 
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